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Summary 
The general equations for the radiation dose dependence of irradiated polymer 
molecular weights have been solved exactly. For an initial most probable molecular 
weight distribution (a = 1), the solutions are analytical and exact. For the general 
case (c~ r 1) the solutions are numerical and exact. The present approach has 
resulted in the solutions for both ~ = 1 and a r 1 being incorporated into a group of 
FORTRAN computer programs which will solve experimental data for scission and 
crosslinking yields by both minimization and exact treatments. Simulated data 
treated using these FORTRAN programs are given. The FORTRAN programs are 
available from the authors. 

Introduction 
During the course of a study of the evaluation of scission and crosslinking yields of 
irradiated polymers by studying the weight-average and z-average molecular 
weights of polymers with an initial Schulz-Zimm molecular weight distribution(l), 
it was necessary to deve]op an approximate method(I) of solution of the general 
equations for the radiation dose dependence of molecular weights of polymers with 
an initial Schulz-Zimm distribution(2,3,4). 
The present work expands and extends theoretical work reported in (1), particularly 
by developing exact numerical solutions of the general equations. These solutions 
allow G(S) and G(X), the scission and crosslinking yields to be evaluated exactly 
using either minimization calculations or the Brent method (see later). 
The aim of this study is to find algebraic solutions to the general equations that are 
suitable for use in computer programs, so that the total work of solving for G(S) 
and G(X) for a set of experimental results may be automated. This aim has been 
achieved and the results are presented here. 

The equations 
The full set of general equations(3) for the dose dependence of each of the molecular 

weights, Mn(number average), ]~w(WeJght average), and Mz(z average) are given 

below: 

~n(O) 
Mn(D) = ....(i) 
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2 h-~n(0) r  ( u T - n ,  a )  

M w ( D ) =  ( u ~ - D )  2 [ 1  --  ( 4 ~ / u ~ - 2 D ) r  .... (2) 

where 

3 Mn ( 0 )  [ r  ( u  ~-D, r  / r  1 ( u T " D ,  a )  ] 

M z ( D )  - - -  . . . .  ( 3 )  
[1  - -  ( 4 5 / / u : r 2 D ) r  2 

r = u~-D -- 1 + [l+(u~-D/a)] - ~  .... (4a) 

and 
r162 = 1 + [l+(u~-D/cr)] - (or+l)  - (2lug-D){1 - [l+(u~'D/~r)] - a  } .... (4b) 

D denotes the radiation dose in gray, ~- and 5( are the respective probabilities per 
gray of scission and crosslinking of a single monomer unit, and 

a = 1/[(Mw(0)/Mn(0)) - 1] and is a measure of the width of the initial molecular 

weight distribution. 

Strategies for solution 
( a) Initial most probable distribution ( ~ = 1) 
For the case of the initial most probable distribution (or = 1), the general equations 
become simplified and are given below: 

Mn(0)/Mn(D ) = 1 + (~-/X - 1)uS/D 

Mw(0)/Mw(D) = 1 + (~-/X- 4)u)/D 

Mz(0)/Mz(D) = (1 + u~-n -4u~D)2 / (1  + u~-D) 

. . . .  On) 

. . . .  

. . . .  (6) 
These equations are then amenable to solution as simultaneous equations in pairs by 
some of the more popular symbolic mathematics computer programs e.g. 
MATHEMATICA(5)  and MACSYMA(6). The solutions are given below: 

Considering M and i ~  

4C --  A --  3 
= 3 uD .... (7a) 

C -- A 

- 3 uD .... (7b) 

Considering ~I w and T~ z 
A2 - - B  

"~ - B u D  .... (8a) 
A~ -- A B  

= 4 B u D  .... (8b) 



527 

Considering M n and M z 

Where 

--(48BC + B~)t/~ + 24C q- B -- 18 

= i 8 uD .... (9a) 

- - ( 4 8 B C  + B 2 )  1 / 2  + 6C + B 
I 8 u D .... (95) 

Uw(O) ~z(O) ~n(O) 
A -  , B - - - ,  and C -  

Mw (D) Mz (D) Mn (D) 
- - . . . . ( r e s p .  lOa, lOb, lOc ) 

Considering -ffl n and 

From equation (2), by simple rearrangement, 

(u~-D) 2 Mw(D) - 4uxDCtMw(D ) - 2r ) = 0 .... (12) 

From equation (1) by rearrangement and multiplication of both sides by r Mw(D), 

4r ) + 4u~-Dr ) - 4r ) Mn(0)/Mn(D ) = 4uj/Dr ) .... (13) 

There are two sets of solutions for Mn and 5-4z" The negative roots of the function 

(48BC + B2) I/2 are accepted since they provide physically significant solutions and 

the positive ones do not. ;- and ~/are related to G(S) and G(X) by the following 
equations: 

G(S) = 9.65x109 u;-/Mn(0 ) ; G(X) = 9.65x10~ u~/Mn(0 ) .... (resp. lla, l lb) 
ANALYZE (S1ANMULT) is the computer program which utilizes the analytical 
solutions expressed in the present section. ANALYZE calculates the exact 

analytical solutions, 4- and 5/, for the case of the initial most probable molecular 
weight distribution, for each of up to 10 different sets of dose/ molecular weight 
data, and gives averages of all the calculated values. Only two dose relationships of 

the three molecular weight averages Mn, Mw, and M z are needed to find the two 

unknowns ~- and ~ and hence G(S) and G(X). ANALYZE allows any two dose 

relationships to be used, e.g. Mn and Mw vs dose, Mw and Mz vs dose, or Mn and 

Mz vs dose. For a single dose point (other than zero), the smaller program 

MONODOSE (SIANAL) will calculate values of G(S) and G(X). Results for a 
single dose, however, may have limited experimental and physical significance, and 
it is better to have at least five points on a molecular weight/ dose relationship in 
order to get reliable estimates. 

(b) The general case (~ r 1) 
In this case, equations (1),(2) and (3) were taken in pairs and solved simultaneously: 
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Equation (13) may then be used to eliminate the term in ~/in equation (12) to give, 

(u~-D)2~w(D) - 2r ) - 4r ) - 4u~-Dr ) 

+ 4r ) = 0 .... (14) 
This equation is then suitable to use in the minimization and Brent methods 
discussed later in the present work. 

Considering M w and M z 

Squaring both sides of equation (2) and dividing by equation (3) and rearranging 

eliminates )( and gives, 

3r (u~-D)4 [~n(0)/~z(D)] [~w(D)/Mn(0)]2 - 4r = 0 .... (15) 
Equation (15) is then suitable to use in the minimization and Brent methods 
discussed later in the present work. 

Considering ~fn and 

Equation (3) may be written as 

3 M n ( O  ) r 1 6 2  

Mz (D) = - -  X 2 .... (16) 

where X = 1 - 4~(r .... (16a) 

From rearrangement of equation (1), 

4  u(0) 4~( 4 4 .... (17) 
- + 

UT2D (uTD) ~ u~D (uTD) 2 ~n(D ) 
Substituting equation (17) into equation (16a) gives 

4 r  4 r   n(o) 
x = 1 + .... (18) 

(u~-D)  2 u~-D (u~-D)  2 ~ n ( D  ) 

and equation (16) becomes 

X2 ~z(D) - 3(r162 ) ~n(0) = 0 .... (16b) 
where X is defined by equation (18) and r and r are defined previously. 

Thus, equation (16b) is suitable to use in the minimization and Brent methods 
discussed later. 

Summary o/the general case 

Taking each of Mn and lVIw, M w and ~z, and Mn and Mz' equations were derived 

so that j( was eliminated and in each case the problem reduced to solution of an 

equation in one unknown, ~-. In the general case, all attempts to find analytical 
solutions to equations(14), (15), and (16b) failed despite the use of the best symbolic 
computation programs available, e.g. MATttEMATICA(5) and MACSYMA(6). 
Thus, a method of minimization and the Brent method (explained later) were used 
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to find numerical solutions to these equations. 

Minimization and the use of STEPT 
( a) Numerical solutions 
Numerical solutions could be obtained for equations (14), (15) and (16b) by using 
the minimization program STEPT(7). Essentially, this program calculates for 

initial values of the parameter :r, the value of the function to be minimized. It then 

takes a step in ~-, recalculates the function at the new position and determines if the 
new position has a lower value than the old position. In this way, it searches for 
positions where the function is a minimum. Disadvantages are that it can 
sometimes detect a local minimum from which it cannot escape, and thus could miss 
a global minimum nearby. The philosophy for use of STEPT for each equation is 

the same. After input of an initial value for ~-, STEPT defines values of ~- and then 
directs a subroutine to calculate the value of the square of the left hand side(LHS) 
of either equation (14), or (15) or (16b) depending on the problem. The LHS of the 
equations is squared so that negative values of the LHS will come out as positive, 

positive will remain positive and the position in ~- where the LHS = 0 will be a true 
global minimum. There are several solutions to each of the equations but the 

authors have found consistently that the most positive position of ~- where the LHS 
of the equations is zero is the solution with the most physical significance. 
Although STEPT provides an error matrix, the values are not reliable and the error 
range needs to be determined by calculating the range of G(S) and G(X) based on 
the range of the individual experimental data. 

The computer programs MNWMONOD (for Mn and Mw), MWZMONOD (for Mw 

and Mz) and MNZMONOD (for Mn and Mz) use the STEPT minimization to find 

numerically exact solutions for the three aspects of the general case (~r r 1). The 

programs all calculate ~ and 5~ and G(S) and G(X) accurately for a single dose. If it 
is desired to analyze a complete molecular weight/dose relationship, then one must 
calculate G(S) and G(X) tbr each dose and average the values. The benefits of these 
programs are (i) the w~ry accurate determination of the solutions, provided 
reasonable initial values are entered, and (ii) the ability to determine easily, 
variations of G(S) and G(X) with dose. 

(~ Nonlinear least squares analysis 
well as the exact solutions mentioned previously, a nonlinear least squares fit to 

experimental data may be calculated using STEPT. In this case, the parameter to 

be minimized is the sum of the square of the deviations of each of M n, M w, and M z 

from the theoretically predicted values calculated by the general equations (1), (2), 

and (3) using known values of Mn(0), ~, u, and D. The deviations are weighted by 

dividing each deviation by the standard error in that particular measurement. 

STEPT varies ~- and ~( independently and together and calculates the sum of the 

squares of the weighted deviations, then makes controlled steps in ~- and ~( to 
determine if a lower value for the sum of the squares exists. STEPT provides an 
error matrix which is not physically reliable. Errors need to be determined by 
judiciously choosing the combination of upper and lower limits of experimental data 
which adequately give the ranges of G(S) and G(X). 
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In the program TAUDCHID (MNWZMIN), any combination or all values of Mn, 

Mw' and Mz may be entered for the range of doses used. At least four dose points 

must be used for the minimization to proceed, but e.g. ten dose points gives a more 
reliable result. The program is not as sensitive to the (guessed) initial values of 
G(S) and G(X). 

The Brent method 
The Brent method referred to earlier is a method of numerical solution of an 
equation of the form 

f(x) = 0 .... (17) 
The simple FORTRAN program (8) calculates the value of the function f(x) for two 
values x 1 and x 2 where f(xl) is negative and f(x2) is positive. The initial values o fx  1 

and x~ are found by trial and error. By bisecting the interval between x i and x2, 

and testing the values of f(x) at the midpoint, x3, the program determines whether 

the solution to equation (17) (i.e. the position where the function f(x) crosses the x 
axis) lies between x 1 and x 3 or x 3 and x r The program then bisects the interval 

that it determines to be the one where f(x) = 0, and the testing process is repeated. 
By iterative repetition and testing, the program finds the position where f(x) = 0 to 
a preset tolerance. Thus a reliable numerical solution (independent of calculus) is 
found to analytically insoluble problems. 
The programs which use this method are ZEROFMNW, ZEROFMWZ, and 

ZEROFMNZ. They solve equations (14), (15), and (16b) for pairs of values of 
n 

and Mw' Mw and Mr' and Mn and i~7 z respectively at a single dose point. For a 

complete molecular weight/dose relationship, one needs to calculate the values of 
G(S) and G(X) at one dose point at a time and then average the values. The 
programs are useful also if there is a variation of G(S) and G(X) with dose. 

Simulation of molecular weights 
Testing of the computer programs was performed using another program 

SIMULATE written to provide simulated Mn, Mw, and Mz vs dose for given values 

of u, a, Mn(0) and D. SIMULATE uses the general equations (1), (2), and (3). 

Testing of computer programs 
Tables 1, 2, and 3 give data generated by SIMULATE. These data were used to 
test MNWMONOD MWZMONOD, and MNZMONOD, as well as ZEROFMNW, 
ZEROFMWZ AND ZEROFMNZ. Also, selected data from Tables 1, 2, and 3 were 
used to test TAUDCHID. All testing proved successful..There has been no instance 
where the program failed to provide the correct values for G(S) and G(X). 
However, care must be taken wheu using the STEPT-based minimization programs 
since it is possible to obtain values for G(S) and G(X) which come from a local 
minimum and not a global minimum. This inconvenience can be sidestepped by 
determining approximate values of G(S) and G(X) from the analytical solutions for 
a = 1, and then using these as a guide for the initial values to be entered in the 
STEPT-based programs. More detail is in the manual available from the authors. 
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Table 1 
Simulated molecular weights 

u=10 a, 0=1, Mn(0)=105, G(S)=0.2, G(X)=0.02 

Dose/Gy Mn Mw Mz 
104 98,169 197,544 298,742 
5x104 91,469 188,293 293,461 
8X104 87,016 181,904 289,315 
2x105 72,831 160,167 272,150 
6x105 47,189 114,541 220,754 
I06 34,901 89,146 183,129 

Table 2 

u=lO a, a=30, Mn(O)=lOS, 

Simulated molecular weights 

O(S)=O.O02, G(X)=O.02 

Dose/Gy Mn Mw Mz 
104 100,187 103,770 107,585 
5x104 100,941 105,555 111,362 
8x104 101,515 106,934 114,327 

237,559 104 ,637  114,815 132,022 
950,236 121 ,543  172,219 299,307 

1,425,350 136 ,214  258,316 676,788 

Table 3 

u=lO a, or=0.2, Mn(O)=105, 

Simulated molecular weights 

G(S) = 0.02, G(X)=0.02 

Dose/Oy Mn Mw Mz 
104 100,000 610,548 1,146,093 
5x104 100,000 656,801 1,358,979 
114,285 I00,000 748,152 1,830,972 
228,570 I00,000 995,345 3,451,687 
342,854 i00,000 1 ,490 ,060  8,203,047 
457,138 i00,000 2,974,752 34,539,382 

Availability of computer prQgrams 
The following FORTRAN computer programs based on the present work, and a 
manual explaining their use are available from the authors. 

ANALYZE Analytical solutions, ~ = 1, multiple doses, gives 
G(S) and G(X). 

MONODOSE Analytical solutions, z = 1, single dose, gives 
G(s) and C(X). 

MNWMONOD, MWZMONOD and MNZMONOD 
Minimization, numerically exact, a ~ 1, single dose, 
gives G(S) and G(X). 

ZEROFMNW, ZEROFMWZ, and ZEROFMNZ 
Brent method, numerically exact, a ~ 1, single dose, 
gives G(S) a.d C(X). 

TAUDCHID Nonlinear least squares, c~ ~ 1, multiple doses 
Gives G(S) and G(X). 
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SIMULATE Exact Mn, Mw, M z vs dose simulation. 
A menu driven compendium of these programs is also available. 

Conclusion 
The authors have summarized here analytical and numerical solutions to the 
equations which describe the variation of polymer molecular weights with radiation 
dose. The authors have also documented the existence of FORTRAN computer 
programs which have become possible using the algebraic solutions provided here. 
These programs now automate the calculation of G(S) and G(X)from experimental 
data, thus removing tedious and time---consuming work from the determination of 
these quantities. 
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